SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Arner Anders) ;pers:(Arner Anders);srt2:(2015-2019)"

Sökning: WFRF:(Arner Anders) > Arner Anders > (2015-2019)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arlock, Per, et al. (författare)
  • Ion currents of cardiomyocytes in different regions of the Göttingen minipig heart
  • 2017
  • Ingår i: Journal of Pharmacological and Toxicological Methods. - : Elsevier BV. - 1056-8719 .- 1873-488X. ; 86, s. 12-18
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction The Göttingen minipig is a promising model for pharmacological safety assessment and for translational research in cardiology. We have examined the main ion currents in cardiomyocytes of the minipig heart. Methods Cardiac cells were isolated from different cardiac regions (endo-, mid- and epicardial left ventricle and right ventricle) from Göttingen minipigs and examined using the whole cell patch clamp technique combined with pharmacological interventions. Results The inward rectifier (IK1), the delayed rectifier (IK), with the rapid and slow components, (IKr, IKs) and the L-type Ca2 + channel (ICa,L) were identified in the different regions of the heart, whereas the Ca2 +-independent transient outward current (Ito1) was observed in only a few cells. IK1 was similar in the cardiac regions with a slightly lower value in the epicardial cells. IKs was smaller in epi- and endo-cardial regions. Discussion The equivalents of the main human cardiac ion currents are present in the minipig cardiomyocytes with the exception of the Ca2 +-independent Ito1. The study provides further evidence that the minipig is a valid model for investigating cardiovascular pharmacology.
  •  
2.
  • Boberg, Lena, et al. (författare)
  • Signaling and metabolic properties of fast and slow smooth muscle types from mice
  • 2018
  • Ingår i: Pflügers Archiv. - : Springer. - 0031-6768 .- 1432-2013. ; 470:4, s. 681-691
  • Tidskriftsartikel (refereegranskat)abstract
    • This study aims to improve the classification of smooth muscle types to better understand their normal and pathological functional phenotypes. Four different smooth muscle tissues (aorta, muscular arteries, intestine, urinary bladder) with a 5-fold difference in maximal shortening velocity were obtained from mice and classified according to expression of the inserted myosin heavy chain (SMHC-B). Western blotting and quantitative PCR analyses were used to determine 15 metabolic and 8 cell signaling key components in each tissue. The slow muscle type (aorta) with a 12 times lower SMHC-B had 6-fold lower expression of the phosphatase subunit MYPT1, a 7-fold higher expression of Rhokinase 1, and a 3-fold higher expression of the PKC target CPI17, compared to the faster (urinary bladder) smooth muscle. The slow muscle had higher expression of components involved in glucose uptake and glycolysis (type 1 glucose transporter, 3 times; hexokinase, 13 times) and in gluconeogenesis (phosphoenolpyruvate carboxykinase, 43 times), but lower expression of the metabolic sensing AMP-activated kinase, alpha 2 isoform (5 times). The slow type also had higher expression of enzymes involved in lipid metabolism (hormone-sensitive lipase, 10 times; lipoprotein lipase, 13 times; fatty acid synthase, 6 times; type 2 acetyl-coenzyme A carboxylase, 8 times). We present a refined division of smooth muscle into muscle types based on the analysis of contractile, metabolic, and signaling components. Slow compared to fast smooth muscle has a lower expression of the deactivating phosphatase and upregulated Ca2+ sensitizing pathways and is more adapted for sustained glucose and lipid metabolism. © 2018 The Author(s)
  •  
3.
  • Gachkar, Sogol, et al. (författare)
  • Aortic effects of thyroid hormone in male mice
  • 2019
  • Ingår i: Journal of Molecular Endocrinology. - 1479-6813. ; 62:3, s. 91-99
  • Tidskriftsartikel (refereegranskat)abstract
    • It is well established that thyroid hormones are required for cardiovascular functions; however, the molecular mechanisms remain incompletely understood, especially the individual contributions of genomic and non-genomic signalling pathways. In this study, we dissected how thyroid hormones modulate aortic contractility. To test the immediate effects of thyroid hormones on vasocontractility, we used a wire myograph to record the contractile response of dissected mouse aortas to the adrenergic agonist phenylephrine in the presence of different doses of T3 (3,3',5-triiodothyronine). Interestingly, we observed reduced vasoconstriction under low and high T3 concentrations, indicating an inversed U-shaped curve with maximal constrictive capacity at euthyroid conditions. We then tested for possible genomic actions of thyroid hormones on vasocontractility by treating mice for 4 days with 1 mg/L thyroxine in drinking water. The study revealed that in contrast to the non-genomic actions the aortas of these animals were hyperresponsive to the contractile stimulus, an effect not observed in endogenously hyperthyroid TRβ knockout mice. To identify targets of genomic thyroid hormone action, we analysed aortic gene expression by microarray, revealing several altered genes including the well-known thyroid hormone target gene hairless. Taken together, the findings demonstrate that thyroid hormones regulate aortic tone through genomic and non-genomic actions, although genomic actions seem to prevail in vivo. Moreover, we identified several novel thyroid hormone target genes that could provide a better understanding of the molecular changes occurring in the hyperthyroid aorta.
  •  
4.
  • Olofsson, Peder S., et al. (författare)
  • Blood pressure regulation by CD4+ lymphocytes expressing choline acetyltransferase
  • 2016
  • Ingår i: Nature Biotechnology. - : Nature Publishing Group. - 1087-0156 .- 1546-1696. ; 34:10, s. 1066-1071
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood pressure regulation is known to be maintained by a neuro-endocrine circuit, but whether immune cells contribute to blood pressure homeostasis has not been determined. We previously showed that CD4(+) T lymphocytes that express choline acetyltransferase (ChAT), which catalyzes the synthesis of the vasorelaxant acetylcholine, relay neural signals(1). Here we show that these CD4(+)CD44(hi)CD62L(Io) T helper cells by gene expression are a distinct T-cell population defined by ChAT (CD4 T-ChAT). Mice lacking ChAT expression in CD4(+) cells have elevated arterial blood pressure, compared to littermate controls. Jurkat T cells overexpressing ChAT (JT(ChAT)) decreased blood pressure when infused into mice. Co-incubation of JT(ChAT) and endothelial cells increased endothelial cell levels of phosphorylated endothelial nitric oxide synthase, and of nitrates and nitrites in conditioned media, indicating increased release of the potent vasorelaxant nitric oxide. The isolation and characterization of CD4 T-ChAT cells will enable analysis of the role of these cells in hypotension and hypertension, and may suggest novel therapeutic strategies by targeting cell-mediated vasorelaxation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy